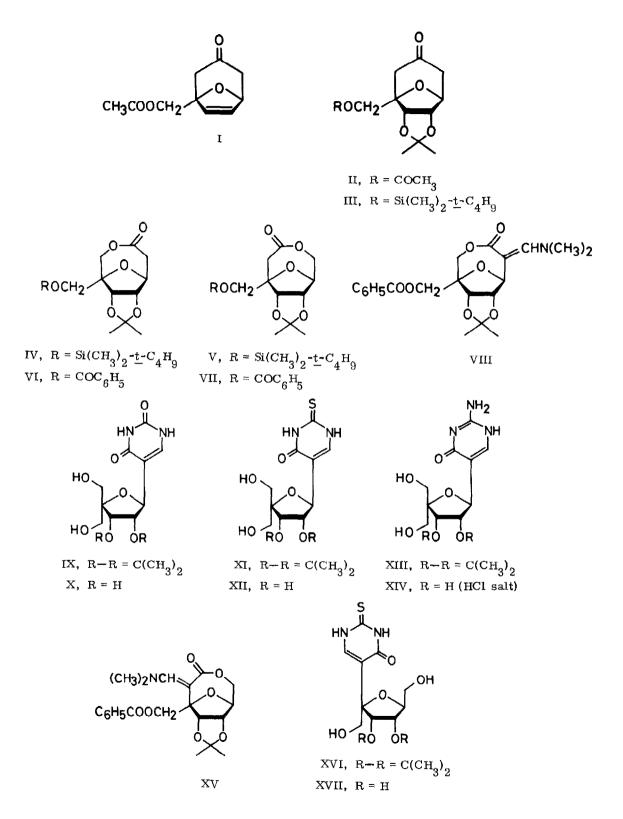
SYNTHESIS OF 4'-HYDROXYMETHYLATED PYRIMIDINE RIBO-C-NUCLEOSIDES¹


T. Sato and R. Noyori*

Department of Chemistry, Nagoya University, Chikusa, Nagoya 464, Japan

<u>Summary</u>: A stereocontrolled synthesis of 4'-hydroxymethylated ribo-<u>C</u>-nucleosides and a new psico-<u>C</u>-nucleoside has been accomplished on the basis of the [3 + 4] reductive cyclo-coupling reaction of $\alpha, \alpha, \alpha', \alpha'$ -tetrabromoacetone and furfuryl acetate.

The 4'-hydroxymethylation of ribonucleosides has received considerable attention in recent years as a means to obtain biologically more effective agents.² Disclosed herein is a straightforward entry to 4'-hydroxymethylated pyrimidine <u>C</u>-nucleosides via the polybromo ketone /furan cyclocoupling approach.³

Reaction of $\alpha, \alpha, \alpha', \alpha'$ -tetrabromoacetone and furfuryl acetate with the aid of Zn/Ag couple⁴ (1:5:1.5 ratio, THF, 20 °C, 12 h), followed by Zn/Cu couple reduction of the cycloadduct in CH₃OH saturated with NH₄Cl (20 °C, 1 h) gave rise to the bicyclic ketone I in 46%yield.⁵ When I was treated with 30% H₂O₂ and a catalytic amount of OsO₄ in a 10:1:1 mixture of acetone, ether, and $t-C_4H_9OH$ (25 °C, 12 h) and then with <u>p</u>-TsOH and anhydrous CuSO₄ in acetone (25 °C, 12 h), the acetonide II⁶ possessing α configuration was obtained in 62% yield as a single stereoisomer. The acetyl group was removed by LiOH in CH₂OH (20 °C, 12 h, 96%) and replaced by a silyl protective group⁷ (1.5 equiv of \underline{t} -C₄H₉(CH₃)₂SiCl and 3 equiv of imidazole, DMF, 25 °C, 12 h, 100%) to give III. The Baeyer-Villiger oxidation was then effected by 3 equiv of CF_3CO_3H (9 equiv of Na_2HPO_4 , CH_2Cl_2 , 25 °C, 12 h) to produce a 55:45 mixture of the regionsomers IV^8 and V^9 quantitatively. The major isomer IV was converted to the benzoate VI by treatment with $(\underline{n}-C_4H_0)_4 N^{\dagger}F^{\dagger}$ in THF (20 °C, 30 min) and then $C_6H_5^{-1}$ COCl (2 equiv, pyridine, 15 °C, 12 h, 90%). Condensation of the lactone VI with an excess of t-butoxybis(dimethylamino)methane in DMF (90 °C, 30 min) provided the dimethylaminomethylene lactone VIII in 91% yield. This compound was susceptible to base catalyzed cyclization with urea (5 equiv, 1 M C_2H_5ONa in C_2H_5OH , reflux, 5 h) and simultaneous removal of the benzoyl moiety to lead to the uracil derivative IX (39%).¹⁰ Finally, the isopropylidene protective group was removed by 10% HCl in CH₂OH to form 5-(4-hydroxymethyl- β -ribofuranosyl)uracil (X) in 89% yield. ^{11, 12} Similarly, treatment of VIII with 7 equiv of thiourea in ethanolic C_2H_5ONa gave XI in 63% yield. Acid removal of the isopropylidene blocking group afforded 5-(4-hydroxymethyl- β -ribofuranosyl)-2-thiouracil (XII) (90%).^{12,13}

The base promoted cyclization of VIII with guanidine, giving XIII, followed by deprotection of the isopropylidene moiety completed the synthesis of 5-(4-hydroxymethyl- β -ribofuranosyl)-isocytosine (XIV) (41%).^{12,14} Thus the desired 4'-hydroxymethylated analogues of pseudo-uridine possessing β -<u>C</u>-glycoside linkage were prepared under complete stereochemical control.

The lactone VII obtained from V can be transformed to 1'-hydroxymethylated <u>C</u>nucleosides.¹⁵ For instance, 5-(1-hydroxymethyl- β -ribofuranosyl)-2-thiouracil (XVII) was prepared by way of XV and XVI.^{12,16} Condensation of VII with an excess of <u>t</u>-butoxybis-(dimethylamino)methane (DMF, 60 °C, 4 h) produced XV, which in turn was subjected to the base catalyzed heterocycle formation with thiourea (1.0 M C₂H₅ONa in C₂H₅OH, reflux, 3 h, 51% yield) and acid catalyzed removal of the isopropylidene group to give the new <u>C</u>-nucleoside XVII consisting of psicose and a pyrimidine base.

Acknowledgment. This work was supported in part by a grant from the Ministry of Education, Japanese Government (Grant-in aid, No. 311709).

REFERENCES AND NOTES

- 1. <u>C</u>-Nucleoside Synthesis. 13. Part 12: T. Sato, M. Watanabe, and R. Noyori, <u>Chem. Lett.</u>, submitted for publication.
- Synthesis of 4'-hydroxymethylated nucleosides: D. L. Leland and M. P. Kotick, <u>Carbohydr.</u> <u>Res.</u>, 38, C9 (1974); R. D. Youssefyeh, D. Tegg, J. P. H. Verheyden, G. H. Jones, and J. G. Moffatt, <u>Tetrahedron Lett.</u>, 435 (1977); R. D. Youssefyeh, J. P. H. Verheyden, and J. G. Moffatt, <u>J. Org. Chem.</u>, <u>44</u>, 1301 (1979); G. H. Jones, M. Taniguchi, D. Tegg, and J. G. Moffatt, <u>ibid.</u>, <u>44</u>, 1309 (1979).
- 3. R. Noyori, T. Sato, and Y. Hayakawa, J. Am. Chem. Soc., 100, 2561 (1978).
- 4. T. Sato and R. Noyori, Bull. Chem. Soc. Jpn., 51, 2745 (1978).
- 5. R. Noyori, Acc. Chem. Res., 12, 61 (1979).
- 6. Mp 84-86 °C. IR (CHCl₃) 1732 and 1720 cm⁻¹ (C=O). ¹H NMR (CDCl₃) δ 1.30 and 1.50 (s, isopropylidene CH₃), 2.12 (s, CH₃C=O), 2.2-2.9 (m, H₅ and H₅), 4.36 (s, CH₂OC=O), 4.46 (d, <u>J</u> = 6.0 Hz, H₃), 4.56 (d, <u>J</u> = 6.0 Hz, H₂), 4.63 (m, H₁).
- 7. E. J. Corey and A. Venkateswarlu, <u>J. Am. Chem. Soc.</u>, <u>94</u>, 6190 (1972).
- 8. Mp 75-76 °C. IR (CHCl₃) 1735 cm⁻¹ (C=O). ¹H NMR (CDCl₃) δ 0.08 and 0.91 (s, <u>t</u>-C₄H₉(CH₃)₂Si), 1.32 and 1.49 (s, isopropylidene CH₃), 2.99 (m, H₅), 3.61 (d, <u>J</u> = 10.5 Hz, <u>H</u>_aH_bCOSi), 3.95 (d, <u>J</u> = 10.5 Hz, H_a<u>H</u>_bCOSi), 4.30 (d, <u>J</u> = 13.2 Hz, H₅), 4.31 (<u>t</u>-like, <u>J</u> = 3.8 Hz, H₁), 4.58 (d, <u>J</u> = 13.2 Hz, H₅), 4.68 (d, <u>J</u> = 6.0 Hz, H₂), 4.86 (d, <u>J</u> = 6.0 Hz, H₃).

2538

- 9. Mp 64-65 °C. IR (CHCl₃) 1738 cm⁻¹ (C=O). ¹H NMR (CDCl₃) & 0.09 and 0.92 (s, <u>t</u>-C₄H₉(CH₃)₂Si), 1.32 and 1.49 (s, isopropylidene CH₃), 2.92 (d, <u>J</u> = 16.0 Hz, H_{5a}), 3.23 (d, <u>J</u> = 16.0 Hz, H_{5b}), 3.65 (d, <u>J</u> = 10.5 Hz, <u>H</u>_aH_bCOSi), 3.90 (d, <u>J</u> = 10.5 Hz, <u>H</u>_aH_bCOSi), 4.29-4.53 (m, H₄ and H₅), 4.60 (d, <u>J</u> = 5.9 Hz, H₂), 5.00 (d, <u>J</u> = 5.9 Hz, H₃).
- 10. Foam. ¹H NMR (dimethyl- \underline{d}_{6} sulfoxide) δ 1.23 and 1.46 (s, isopropylidene CH₃), 3.50 (m, H₅₁ and CH₂OH), 4.53-4.86 (m, H₁₁, H₂₁, and H₃₁), 7.51 (s, H₆). UV λ_{max} (CH₃OH) 263 nm (ϵ 4910), λ_{max} (0.1 N NaOH) 284 nm (ϵ 4670).
- 11. Mp 76-79 °C. ¹H NMR (dimethyl- \underline{d}_6 sulfoxide) δ 3.46 (d-like, $\underline{J} = 6.0$ Hz, \underline{H}_5 , and C \underline{H}_2 OH), 4.33 (m, \underline{H}_1 , \underline{H}_2 , and \underline{H}_3), 4.0-5.0 (br, OH), 7.43 (d, $\underline{J} = 5.8$ Hz, \underline{H}_6), 10.87 (d, $\underline{J} = 5.8$ Hz, \underline{H}_1), 11.05 (br s, \underline{H}_3). UV λ_{\max} (CH₃OH) 264 nm (ε 6580), λ_{\max} (0.1 N HCl) 264 nm (ε 6090), λ_{\max} (0.1 N NaOH) 287 nm (ε 6780).
- 12. All new compounds described herein are racemic mixtures. The optical resolution may be attained at the lactone stage. 3
- 13. Mp 84-87 °C. ¹H NMR (dimethyl- \underline{d}_{6} sulfoxide) δ 3.48 (d-like, $\underline{J} = 5.9$ Hz, \underline{H}_{5} , and CH₂OH), 4.06 (m, \underline{H}_{2}), 4.61 (m, \underline{H}_{1} , and \underline{H}_{31}), 4.3-5.0 (br, OH), 7.52 (d, $\underline{J} = 5.9$ Hz, \underline{H}_{6}), 11.84 (d, $\underline{J} = 5.9$ Hz, \underline{H}_{1}), 11.98 (br s, \underline{H}_{3}). UV λ_{max} (CH₃OH) 213 nm (ε 14110), 275 (15840), 296 (sh, 13120), λ_{max} (0.1 N HCl) 214 nm (ε 13500), 273 (13500), 292 (sh, 12080), λ_{max} (0.1 N NaOH) 265 nm (ε 13620), 285 (12920).
- 14. Mp 177-182 °C. ¹H NMR (dimethyl-d₆ sulfoxide) δ 3.51 (d-like, $\underline{J} = 6.1$ Hz, H₅, and CH₂OH), 4.08 (m, H₂, and H₃), 4.57 (m, H₁), 5.0~6.4 (br, OH), 7.82 (br s, H₆), 8.50 (br, NH₂). UV λ_{max} (CH₃OH) 224 nm (ε 9250), 263 (7870), λ_{max} (0.1 N HCl) 222 nm (ε 9580), 263 (7520), λ_{max} (0.1 N NaOH) 233 nm (ε 10870), 278 (8510).
- For 1'-hydroxymethylated ribonucleosides such as angustmycin A and C, see R. J. Suhadolnik, "Nucleoside Antibiotics", Wiley-Interscience, New York, N.Y., 1970, pp 96-122.
- 16. Foam. ¹H NMR (dimethyl-d₆ sulfoxide) δ 1.26 and 1.48 (s, isopropylidene CH₃), 3.3-3.8 (br, OH), 3.52 (d-like, $\underline{J} = 7.5$ Hz, H₅, and CH₂OH), 4.56-4.88 (m, H₂, H₃, and H₄), 7.52 (s, H₆). UV λ_{max} (CH₃OH) 214 nm (ϵ 8780), 276 (11350), 293 (10040), λ_{max} (0.1 N NaOH) 223 nm (ϵ 12910), 264 (8430), 289 (7080).

(Received in Japan 27 March 1980)